Fuzing for Global Interoperability

- Cockpit Programming to Reduce Logistics
- Distributed Arming Systems for Missiles
- Tolerant Burst Point Control

Future Cockpit Programming

Present programming

- Mission planning tools program a PCMCIA card
- PCMCIA card sent to fuze programming site or Mission data sent to fuze programming site and program a PCMCIA card
- Setter unit programs fuze on ground
- Fuze's program checksums hand written on weapon
- Weapon loaded onto specific location of aircraft
- In-flight, fuze mission data can be reprogrammed
- Pilot selects proper weapon from aircraft stores
- Launch weapon

Future programming

- Mission planning develops mission data
- Mission data sent to aircraft
- Aircraft programs fuze, including weapon type
- Launch weapon

Cockpit Programming Improvements

- Reduce Tactical Response Time by eliminating Ground Programming Processes
- Increase Reliability of Launching Proper Weapon from Aircraft.
 Prevent Launching Weapon with Wrong Mission Data at a Target,
 when can't Interrogate Weapon on Aircraft
- Eliminate Hardware, I.e. Ground Setter Unit
- Eliminate Training, I.e. Ground Setter Unit Training
- Eliminate Maintenance I.e. Ground Setter Unit Maintenance
- Increase Fuze Connector Life and Reliability
 - Reduce Number of Connections to Fuze

Cockpit Programming Plan

- Develop System Safety Approach to program Mission and Weapon Type Parameters
- Obtain Safety Board Approval of Approach
- Implement Approach
- Obtain Safety Board Approval of Design

Distributed Arming Systems

- Reason for a Distributed Arming System
 - Fuze does not have access to Arming Environments, like when Fuze is buried in a Missile
- Core Requirements for Distributed Arming System
 - MIL-STD-1316 requires Two Independent Arming Environments that Independently Control Arming
 - Hardware only (No Software) in at Least One Arming Environment Path
 - Unique Code for Arming

Examples of Distributed Arming Systems

- Free-Flight and Guided Bomb Systems
 - FMU-139 and FZU-48
 - FMU-152 and FZU-55
 - HTSF and FZU-60
- BAT: Umbilical Separation, Air Stream Sensing, and ESAD
- TTPV with a HTSF
- CALCM with a HTSF
- Others

FZU Distributed Arming Systems

- FZU detects Two Independent Arming Environments
 - Lanyard Pull
 - Minimum Lanyard Pull Force
 - FZU Time Windows the Turbine Release Arming Environment
 - FZU Powers Fuze with Post Launch Air Stream
- Unique Power & Turbine Release Signals from FZU-48 & FZU-55
 - Positive for Power
 - Negative for Turbine Release
- FZU-60 Power and Turbine Release Frequencies verified with HTSF & MEHTF

Missile Distributed Arming Systems

- Missile programs Fuze
- Missile detects Arming Environments
- Missile builds Unique Arm Code with Arming Environment Data
- Missile provides Arming Power to Fuze
- Missile provides Unique Arm Code to Fuze
- Fuze arms after
 - Timing out Arm Time
 - Detecting Unique Arm Code

Unique Arm Code

- Probability of Occurrence << One in a Million to meet MIL-STD-1316's Less than One in a Million arm before launch for System
- Ignores Common signals
 - •Common power: DC, 110Vac. 60hz; 110Vac, 400hz
 - Low Frequency Guidance Signals
- Provides Immunity to Electromagnetic Environments (HERO, EMV, Other)
- Built using arming environments like
 - Launch
 - Deployment of Air Surfaces
 - Post Launch Air Stream or Engine Power
 - Other

Tolerant Burst Point Control

- Void Detection of HTSF and MEHTF provide Accurate Depth of Burial for
 - Varying Overburden
 - Multiple Voids
 - Unknown Void Lengths

HTSF & MEHTF Void Burst Point Control

- Void depth of burial makes target defeat economical with Tolerant burst point control
- DOB from void entry fires warhead in void without accurate target intelligence
 - Prevents fires before and after voids
 - Reduces DOB errors from variations in overburden, impact angles, angle of attack, impact velocity, and warhead turning during penetration

Some fuzes
miss void due to
g switch delay
to detect impact

26ms Delay Fire